Defn let $\Omega \subseteq \mathbb{R}^n$ be open, $f: \Omega \rightarrow \mathbb{R}$ all partial derivatives of f up to order r exist and are continuous on st f is called a C^{∞} function if it is C^{r} | | Generalization of Clairaut's thm for any $r \geqslant 0$

 $eg \nightharpoonup f$ is C if it is continuous Θ fixig is C^2 if exist and are continuous

Math 2010 Week 6 Examples of C° function Polynomials, Rational functions, Exponential Logarithm Trigonometricfunctions Let $r \geq 0$. It is called a C^r function if $|$ and their sum/difference/product/quotient/compositions eg. e^{x-y} sin $\frac{x}{y}$ If f is C^r on an open set $\Omega \subseteq \mathbb{R}^n$, then the order of differentiation does not matter for all partial derivatives up to order r.

$$
f_{r}
$$
, f_{x} , f_{y} , f_{xx} , f_{yx} , f_{yy}
\n f_{rx} , f_{y} , f_{xx} , f_{yy}
\n $f_{xz} = f_{zx}$, $f_{xyz} = f_{yx} = f_{zyx}$
\n $f_{xxy} = f_{yyx} = f_{yxx}$

Differentiability 1 variable case revisited $f: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable at a if $f'(a) = \lim_{x\to a} \frac{f(x) - f(a)}{x - a}$ exists M ultivariable case: $f: \mathbb{R}^n \rightarrow \mathbb{R}$, de \mathbb{R}^n Same definition? $lim \frac{f(\vec{x})-f(\vec{a})}{} < R$ $\overrightarrow{x}-\overrightarrow{\alpha} \qquad \overrightarrow{x}-\overrightarrow{\alpha} \qquad \longleftarrow \mathbb{R}^n \times$ Doesn't make sense to divide by a vector Need another way to define differentiability. How? In terms of linear opproximation and error.

<u>Linear Approximation for $f(x)$ </u> Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a Then $f(x) \approx L(x) := f(a) + f'(a)(x-a)$ $L(x)$ is the "best" linear function (deg ≤ 1 polynomial) to approximate fix) near a $y = f(x)$ $y=L(x)$ 5.1 Ω Tangent at a _ "Best" line to approximate the graph $y=f(x)$ near α $y = L(x)$ <u>Rmk</u> In linear algebra, linear function/map means $L(x+y)$ = $L(x)+L(x)$ and $L(c\vec{x})$ = $cL(\vec{x})$ In particular, $L(\vec{0}) = \vec{0}$. The $L(x)$ defined above may not be linear in this sense.

Error of approximation

\n
$$
\mathcal{E}(x) = f(x) - L(x)
$$
\n
$$
= f(x) - f(a) - f'(a)(x-a)
$$
\nNote

\n
$$
\frac{\mathcal{E}(x)}{x-a} = \frac{f(x) - f(a)}{x-a} - f'(a)
$$
\n
$$
\lim_{x \to a} \frac{\mathcal{E}(x)}{x-a} = \lim_{x \to a} \frac{f(x) - f(a)}{x-a} - f'(a)
$$
\n
$$
= f'(a) - f'(a) = 0
$$
\nEquivalently

\n
$$
\lim_{x \to a} \frac{|\mathcal{E}(x)|}{|x-a|} = 0
$$
\nError is small compared to $\overline{x}-\overline{a}$

In higher dim, graph of f(x) should be approximated by higher dim linear objects. (eg. Tangent plane of z=f(x,y)) 9 Suppose $f: \mathbb{R}^2 \rightarrow \mathbb{R}$, $f_x(a,b)$, $f_y(a,b)$ exist. Try to approximate $f(x,y)$ near (a,b) : $L(x, y)$ $f(x, y) \approx f(a, b) + f_x(a, b) (x - a) + f_y(a, b) (y - b)$ slipe in Δx slipe in Δy $value_{at}(a,b)$ x-direction y-direction $(a, b, f(a, b))$ $Z=L(x,y)$ $Z = f(x, y)$

Define let
$$
sI \subseteq \mathbb{R}^n
$$
 be open, $\overline{\alpha} = (a_1, a_2, \dots, a_n) \in \mathbb{R}$

\n $f: \mathbb{S} \longrightarrow \mathbb{R}$ is said to be **differentiable at** $\overline{\alpha}$ if

\n① All partial derivatives $\frac{\partial f}{\partial x_i}(\overline{\alpha})$ exist for $i = 1, 2, \dots, n$

\n② In the linear approximation for $f(\overline{x})$ at $\overline{\alpha}$, $f(\overline{x}) = f(\overline{\alpha}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\overline{\alpha})(x_i - a_i) + \varepsilon(\overline{x})$

\nL(\overline{x}) = Linear approximation error of $f(\overline{x})$ at $\overline{\alpha}$

\nThe error term $\varepsilon(\overline{x})$ satisfies

\nlim $\frac{\varepsilon(\overline{x})}{\overline{x} - \overline{\alpha}} = 0$

\nA differentiable function is one which can be well approximated by a linear function locally.

Rmk
$L(\vec{x}) = f(\vec{\alpha}) + \sum_{i=1}^{n} \frac{\partial f}{\partial X_{i}}(\vec{\alpha}) (X_{i} - \alpha_{i})$
$Slope \text{ of } f$ in ΔX_{i}
X_{i} -direction at $\vec{\alpha}$
$Wole$
$0 L(\vec{x})$ is a deg ≤ 1 polynomial
$\frac{\partial L}{\partial X_{i}}(\vec{\alpha}) = f(\vec{\alpha})$
$\frac{\partial L}{\partial X_{i}}(\vec{\alpha}) = \frac{\partial f}{\partial X_{i}}(\vec{\alpha})$
$Y = L(\vec{x})$ is a in-plane tangent to $Y = \vec{\alpha}$
$Y = f(\vec{x})$ of $\vec{x} = \vec{\alpha}$

 \bullet

e91 f(x,y) = x²y
\n① Show that f is differentiable at (1,2)
\n③ Approximate f(1.1,1.9) using linearization
\n③ Find tangent plane of z=f(x,y) at (1,2,2)
\nSol ①
$$
\frac{3f}{3x} = 2xy
$$
 $\frac{3f}{3y} = x^2$
\n $\frac{3f}{3x}(1,2) = 4$ $\frac{3f}{3y}(1,2) = 1$
\n \therefore The linearization at (1,2) is
\n $L(x,y) = f(1,2) + \frac{3f}{3x}(1,2)(x-1) + \frac{3f}{3y}(1,2)(y-2)$
\n $= 2 + 4(x-1) + (y-2)$
\nwith error term
\n $E(x,y) = f(x,y) - L(x,y)$
\n $= x^2y - 2 - 4(x-1) - (y-2)$

$$
\lim_{(x,y)\to(1,2)} \frac{\mathcal{E}(x,y)}{||(x,y)-(1,2)||}
$$
\n
$$
= \lim_{(x,y)\to(1,2)} \frac{x^2y-2-4(x-1)-(y-2)}{(x-1)^2+(y-2)^2} \quad (a+x-1) = h
$$
\n
$$
= \lim_{(h,k)\to(0,0)} \frac{((+h)^2(2+k)-2-4h-k)}{\int h^2+k^2}
$$
\n
$$
= \lim_{(h,k)\to(0,0)} \frac{h^2k+2hk+2h^2}{\int h^2+k^2} \quad (a+b=rcos\theta
$$
\n
$$
= \lim_{r\to 0} \frac{r^3cos^2\theta sin\theta + 2r^2cos\theta sin\theta + 2r^2cos^2\theta}{r}
$$
\n
$$
= \lim_{r\to 0} r^2cos^2\theta sin\theta + 2r cos\theta sin\theta + 2rcos\theta
$$
\n
$$
= 0 \quad by \quad \text{Sondwich theorem}
$$
\n
$$
\therefore f \text{ is differentiable at } (1,2)
$$

$$
2 f(1,1,1.9) \approx L(1.1,1.9)
$$
\n
$$
= 2 + 4(1.1 - 1) + (1.9 - 2)
$$
\n
$$
= 2 + 0.4 + (-0.1)
$$
\n
$$
= 2.3
$$
\n
$$
Compare: f(1.1,1.9) = 2.299
$$
\n
$$
3 Tangent at (1.2,2) is
$$
\n
$$
z = L(x,y)
$$
\n
$$
= 2 + 4(x-1) + (y-2)
$$
\n
$$
z = -4 + 4x + y
$$
\n
$$
\frac{292}{3} \text{ Is } f(x,y) = \int |xy|
$$
\n
$$
differential be at (0,0)?
$$

$$
\frac{S_{0}l}{\partial x} \frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0
$$

\n
$$
\frac{S_{0}l}{\partial x} \frac{\partial f}{\partial y}(0,0) = 0
$$

\n
$$
\therefore L(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)(x-0) + \frac{\partial f}{\partial y}(0,0)(y-0)
$$

\n
$$
= 0 + 0 + 0
$$

\n
$$
\therefore L(x,y) = 0 \text{ is the zero function } I
$$

\n
$$
\therefore L(x,y) = 0 \text{ is the zero function } I
$$

\n
$$
\therefore L(x,y) = 0 \text{ is the zero function } I
$$

\n
$$
\therefore L(x,y) = \lim_{x \to 0} \frac{f(x,y)}{h} = \lim_{(x,y) \to (0,0)} \frac{f(x,y)}{h} = \lim_{x \to 0} \frac{f(x,y)}{h} = \lim_{x
$$

Rmk	In lost example, $f(x,y) = \sqrt{ xy }$, $L(x,y) = 0$
Along the λ the $y = mx$, $f(x, mx) = \sqrt{ mx^2 } = \sqrt{ m } x $	
$\frac{A(mg x-0xis(m=0))}{f(x,0) = 0 = L(x,0)}$ (Good approximation)	
$\frac{A(mg y=0x(m=1))}{f(x,x) = x $, $L(x,x) = 0$ (Bad approximation)	
In general, our $L(\vec{x})$ is defined using $\frac{\partial f}{\partial x_1} \dots \frac{\partial f}{\partial x_n}$ (Derivative on coordinate directions)	
Differentiability: Information on coordinate direction $(\frac{\partial f}{\partial x_1})$ \leftarrow A strong condition!	
Differentiability: Information on every direction	

Thm If $f(\vec{x})$ is differentiable at \vec{a} , then $f(\vec{x})$ is continuous at \vec{a}

 $f(\vec{x}) = \lfloor (\vec{x}) + \epsilon(\vec{x}) \rfloor$ n
Linearization of f at \vec{a} f is differentiable at \vec{a} $\Rightarrow \lim_{\vec{x} \to \vec{a}} \frac{\mathcal{E}(\vec{x})}{\|\vec{x} - \vec{a}\|} = 0$ \therefore $\lim_{\vec{x} \to \vec{a}} E(\vec{x})$ $= \lim_{\overrightarrow{X} \to \overrightarrow{\alpha}} \frac{\mathcal{E}(\overrightarrow{X})}{\|\overrightarrow{X}-\overrightarrow{\alpha}\|} \cdot \lim_{\overrightarrow{X} \to \overrightarrow{\alpha}} \|\overrightarrow{X}-\overrightarrow{\alpha}\|$ $= 0.0 = 0$

$$
\lim_{\overline{x}\to\overline{a}} f(\overline{x})
$$
\n
$$
= \lim_{\overline{x}\to\overline{a}} L(\overline{x}) + \lim_{\overline{x}\to\overline{a}} E(\overline{x})
$$
\n
$$
= \lim_{\overline{x}\to\overline{a}} \left(f(\overline{a}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\overline{a}) (x_i - a_i) \right) + 0
$$
\n
$$
= f(\overline{a}) \qquad \text{polynomial } \Rightarrow \text{ continuous}
$$

$$
\therefore
$$
 f is continuous at \vec{a}